Modification of TiO2 by Bimetallic Au-Cu Nanoparticles for Wastewater Treatment.

نویسندگان

  • Zibin Hai
  • Nadia El Kolli
  • Daniel Bahena Uribe
  • Patricia Beaunier
  • Miguel José-Yacaman
  • Jackie Vigneron
  • Arnaud Etcheberry
  • Sébastien Sorgues
  • Christophe Colbeau-Justin
  • Jiafu Chen
  • Hynd Remita
چکیده

Au, Cu and bimetallic Au-Cu nanoparticles were synthesized on the surface of commercial TiO2 compounds (P25) by reduction of the metal precursors with tetrakis (hydroxymethyl) phosphonium chloride (THPC) (0.5 % in weight). The alloyed structure of Au-Cu NPs was confirmed by HAADF-STEM, EDS, HRTEM and XPS techniques. The photocatalytic properties of the modified TiO2 have been studied for phenol photodegradation in aqueous suspensions under UV-visible irradiation. The modification by the metal nanoparticles induces an increase in the photocatalytic activity. The highest photocatalytic activity is obtained with Au-Cu/TiO2 (Au/Cu 1:3). Their electronic properties have been studied by time resolved microwave conductivity (TRMC) to follow the charge-carrier dynamics. TRMC measurements show that the TiO2 modification with Au, Cu and Au-Cu nanoparticles plays a role in charge-carrier separations increasing the activity under UV-light. Indeed, the metal nanoparticles act as a sink for electron, decreasing the charge carrier recombination. The TRMC measurements show also that the bimetallic Au-Cu nanoparticles are more efficient in electron scavenging than the monometallic Au and Cu ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATION OF Au-Rh AND Au-Mo BIMETALLIC NANOCLUSTERS ON TiO2(110): A COMPARATIVE STUDY

Gold-rhodium and gold-molybdenum layers were prepared on a nearly stoichiometric titania and characterized by LEIS, XPS and STM. In the Au-Rh bimetallic system, Rh atoms impinged onto Au clusters pregrown on TiO2(110) became covered by gold atoms. In contrast, Mo caused the disruption of gold nanoparticles.

متن کامل

Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, wh...

متن کامل

SYNTHESIS OF SILICA-COATED Au WITH Ag, Co, Cu, AND Ir BIMETALLIC RADIOISOTOPE NANOPARTICLE RADIOTRACERS

Radioisotopes are useful tracers because their chemical properties are the same as those of stable isotopes and they show higher detection sensitivity than other tracers. Their usefulness has been demonstrated in fluorescence experiments in diverse areas including life science, medicine, and engineering. SiO2-coated radioisotope Au coreshell nanoparticles (Au@SiO2 NPs) were first synthesized by...

متن کامل

Interaction of atomic hydrogen with monometallic Au(100), Cu(100), Pt(100) surfaces and surface of bimetallic Au@Cu(100), Au@Pt(100) overlayer systems: The role of magnetism

The spin-polarized calculations in generalized gradient approximation density–functional theory (GGA–DFT) have been used to show how the existence of second metals can modify the atomic hydrogen adsorption on Au (100), Cu (100), and Pt (100) surfaces. The computed adsorption energies for the atomic hydrogen adsorbed at the surface coverage of 0.125 ML (monolayer) for the monometallic Au (100), ...

متن کامل

Au-based bimetallic nanoparticles for the intramolecular aminoalkene hydroamination.

Bimetallic Au-based nanoparticles (Au-M where M = Pt, Pd, Cu, Ni), synthesized by simultaneous reduction of the Au salt with noble/non-noble metal salts, exhibit a high activity for the aminoalkene (2,2-diphenylpent-4-en-1-amine) hydroamination affording the 5-membered Markovnikov product. Even though the particle size and morphology of Au-M nanoparticles are comparable to the corresponding mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials chemistry. A

دوره 1 36  شماره 

صفحات  -

تاریخ انتشار 2013